电阻

如图所示,边长为L1和L2的矩形线圈abcd,其中L1=0.4m,L2=0.2m,电阻R=0.1Ω,线圈绕00&\#39;轴在匀强磁场中匀速转动,角速度=10rad/s,磁场方向垂直纸面向里,磁感应强度B=0.1T,则线圈中产生的最大感应电流的大小为____A,线圈所受的最大磁力矩的大小为____N·m.

如图所示,边长为L1和L2的矩形线圈abcd,其中L1=0.4m,L2=0.2m,电阻R=0.1Ω,线圈绕00&\#39;轴在匀强磁场中匀速转动,角速度=10rad/s,磁场方向垂直纸面向里,磁感应强度B=0.1T,则线圈中产生的最大感应电流的大小为\_\_\_\_A,线圈所受的最大磁力矩的大小为\_\_\_\_N·m.

如图所示,有一个电阻不计的光滑导体框架,水平放置在磁感应强度为B,方向竖直向上的匀强磁场中,框架宽为L,框架上放一质量为m,电阻为R的导体棒ab,现用一水平恒力F作用于棒上,使棒由静止开始运动,棒的加速度最大值是____,速度最大值是____.

如图所示,有一个电阻不计的光滑导体框架,水平放置在磁感应强度为B,方向竖直向上的匀强磁场中,框架宽为L,框架上放一质量为m,电阻为R的导体棒ab,现用一水平恒力F作用于棒上,使棒由静止开始运动,棒的加速度最大值是\_\_\_\_,速度最大值是\_\_\_\_.

如图所示,匀强磁场方向垂直于纸面向里,磁感应强度B=0.2T,一根长0.4m的直导线AB以5m/s的速度向左匀速地在导轨CD、EF上滑动,电阻R等于1Ω,则感应电流的大小为____A;磁场对直导线AB的作用力大小为____N.

如图所示,匀强磁场方向垂直于纸面向里,磁感应强度B=0.2T,一根长0.4m的直导线AB以5m/s的速度向左匀速地在导轨CD、EF上滑动,电阻R等于1Ω,则感应电流的大小为\_\_\_\_A;磁场对直导线AB的作用力大小为\_\_\_\_N.

面积S=2cm2的单匝线圈跟匀强磁场的磁感线垂直,在时间=0.05s内的磁感应强度从B1=0.5T均匀地减少到B2=0.1T,则在线圈中产生的感应电动势大小ε=____,若线圈闭合,且线圈的总电阻为0.2Ω,则线圈中的感应电流强度为____.

面积S=2cm2的单匝线圈跟匀强磁场的磁感线垂直,在时间=0.05s内的磁感应强度从B1=0.5T均匀地减少到B2=0.1T,则在线圈中产生的感应电动势大小ε=\_\_\_\_,若线圈闭合,且线圈的总电阻为0.2Ω,则线圈中的感应电流强度为\_\_\_\_.

如图所示,相距为L的两根导轨放在与水平面成θ角的斜面上,导轨底部用导体CD连接,忽略导轨和导体CD的电阻,一磁感应强度为B的匀强磁场与斜面垂直,质量为m,电阻为R的导体杆AB置于导轨上,且与导轨垂直.已知导体杆AB与导轨间的动摩擦因数为μ,放开导体杆AB,它将沿导轨下滑,并最终做匀速运动.求导体杆做匀速运动时的速度V0?

如图所示,相距为L的两根导轨放在与水平面成θ角的斜面上,导轨底部用导体CD连接,忽略导轨和导体CD的电阻,一磁感应强度为B的匀强磁场与斜面垂直,质量为m,电阻为R的导体杆AB置于导轨上,且与导轨垂直.已知导体杆AB与导轨间的动摩擦因数为μ,放开导体杆AB,它将沿导轨下滑,并最终做匀速运动.求导体杆做匀速运动时的速度V0?

如图所示,在磁感应强度为B的均匀磁场中,有两条平行金属长导轨,相距为L,两导轨所在平面与磁场垂直,导轨的一端与电阻R连接,电容C与R并联.图中MN为放置在两导轨上的金属棒,棒的电阻为r(导轨电阻不计),金属棒在一恒定拉力F的作用下向右运动.试求:  (1)金属棒所获得的最大速度Vm;  (2)电容器的下极板所带的最大电量Qm并确定其正负.

如图所示,在磁感应强度为B的均匀磁场中,有两条平行金属长导轨,相距为L,两导轨所在平面与磁场垂直,导轨的一端与电阻R连接,电容C与R并联.图中MN为放置在两导轨上的金属棒,棒的电阻为r(导轨电阻不计),金属棒在一恒定拉力F的作用下向右运动.试求:  (1)金属棒所获得的最大速度Vm;  (2)电容器的下极板所带的最大电量Qm并确定其正负.

如图所示,长50cm的金属棒AB在B=0.5T的匀强磁场中受F=0.25N的作用力沿金属框运动,  (1)问棒AB的运动情况如何;  (2)求棒AB在运动过程中所得的最大速度;  (3)设棒AB在运动过程中电路的总电阻保持不变,等于0.1Ω,求电路所得的电功率和机械功率.(不计摩擦力)

如图所示,长50cm的金属棒AB在B=0.5T的匀强磁场中受F=0.25N的作用力沿金属框运动,  (1)问棒AB的运动情况如何;  (2)求棒AB在运动过程中所得的最大速度;  (3)设棒AB在运动过程中电路的总电阻保持不变,等于0.1Ω,求电路所得的电功率和机械功率.(不计摩擦力)

如图所示,在磁感应强度为B的匀强磁场中有两条平行金属导轨,导轨间的距离为L,导轨上连有电阻R1和电阻R2,金属棒MN放置在导轨上,并在拉力F的作用下向右做速度为v的匀速运动,不计金属棒与导轨之间的摩擦以及金属棒和导轨的电阻,求:  (1)电阻R1和R2上各自消耗的热功率P1和P2 ;  (2)拉力的功率P.

如图所示,在磁感应强度为B的匀强磁场中有两条平行金属导轨,导轨间的距离为L,导轨上连有电阻R1和电阻R2,金属棒MN放置在导轨上,并在拉力F的作用下向右做速度为v的匀速运动,不计金属棒与导轨之间的摩擦以及金属棒和导轨的电阻,求:  (1)电阻R1和R2上各自消耗的热功率P1和P2 ;  (2)拉力的功率P.

如图所示,铜棒AB与导线框接触构成矩形回路,把它放置在B=1T的匀强磁场中,磁场方向垂直于纸面向里,已知AB棒长L=1m,以v=4m/s匀速地向左滑动.导线框和铜棒AB的电阻不计,R=2Ω,求:  (1)AB滑动时产生的感应电动势;  (2)回路中感应电流的大小和方向;  (3)磁场对铜棒AB的作用力的大小;  (4)感应电流消耗在电阻R上的功率.

如图所示,铜棒AB与导线框接触构成矩形回路,把它放置在B=1T的匀强磁场中,磁场方向垂直于纸面向里,已知AB棒长L=1m,以v=4m/s匀速地向左滑动.导线框和铜棒AB的电阻不计,R=2Ω,求:  (1)AB滑动时产生的感应电动势;  (2)回路中感应电流的大小和方向;  (3)磁场对铜棒AB的作用力的大小;  (4)感应电流消耗在电阻R上的功率.

电阻抗成像原理.pdf

本书介绍了电阻抗成像技术的原理、驱动模式、硬件测量技术,全面论述了以等位线反投影和快速Newton一步误差重构算法为主的动静态成像算法,阐述开放式电阻抗成像和开放式磁感应成像技术在理论和实验上取得的进展。