数论

趣味数论.pdf

自然数产生于史前时代,人们对它的研究源远流长,古往今来,数学家们提出和解决了数不清的有关自然数性质的问题,在数学中,形成了一个结构严谨、内容丰富多采的分支——数论不少问题的解决,思想的深刻和方法的巧妙,足以使世世代代的数学爱好者赞赏不已,数论中许多问题叙述简明而难度极大,是富有魅力的,以华罗庚教授为代表的中国数学家在数论研究中令人瞩目的工作,也引起人们对数论更大的兴趣,我们经常与自然数打交道,对自

算法数论 | 2版.pdf

本书论述了算法数论的基本内容,其中涉及同余式、二次剩余、特征、连分数、代数数域、椭圆曲线、素性检验、大整数因子分解算法、椭圆曲线上的离散对象、超椭圆曲线、格理论等分支,也介绍了这些知识在密码学中的一些应用。

算法数论.pdf

本书论述了算法数论的基本内容,其中包括:连分数、代数数域、椭圆曲线、素性检验、大整数因子分结算法、椭圆曲线上的离散对数、超椭圆曲线等。

数论中的伪随机二进制数列.pdf

本书介绍了如何基于数论中的Legendre符号Liouville函数、最大素因子、丢番图逼近等来生成伪随机二进制数列,使用的方法涉及多项式特征和的评估、多项式指数和的估计、Dirichlet L函数均值、有限域上多项式理论等。

代数与数论.pdf

本书以域的扩张理论为主线,通过介绍域扩张、伽罗瓦扩张、数域扩张和有限域扩张的基本理论与方法,为纠错编码与密码研究提供所必需的代数与数论方面的知识。

数论的方法 | 下册.pdf

本书是《数论的方法》一书的下册.上册介绍了数论中几种重要的初等方法以及解析数论的一些基本理论与方法.下册系统地论述了三角和方法,包括有理型三角和、李变数三角和及二维三角和方法等.三角和方法是数论中最重要的方法之一.作者以较少的篇幅,阐明了三角和方法的基本内容,并且给出了在哥德巴赫