微分方程

线性微分方程的非线性扰动 | 2版.pdf

本书系统地论述了一些重要的常微分方程和偏微分方程边值问题解的存在性和唯一性,主要内容有非共振问题、共振问题、强共振问题、特征线问题及其扰动、非线性常微分方程边值问题正解、结点解散的存在性和解集分支的全局结构。

微分方程的建模与计算.pdf

本书图文并茂地叙述了微分方程的基本概念、著名实例、重要模型、发展历史, 讲授了常微分方程求解的初等积分法和待定系数法, 偏微分方程求解的特征线法、变量变换法、积分变换法、行波法、延拓法、分离变量法、Green 函数法和变分方法, 介绍了求解方程的数学软件Mathematica,全书内容共由十二章组成. 同时, 本书给出了作业详细完整的答案, 读者扫描每章后的二维码可查看答案, 降低了初学者的学习难

动力学常微分方程的时间积分方法.pdf

本书介绍了求解动力学常微分方程的时间积分方法, 主要包括Newmark类方法、级数类方法、Runge-Kutta等高阶方法、高精度时间积分方法、复合时间积分方法、非线性系统的保能量方法、非光滑系统的时间步进方法、非线性动力学系统的无条件稳定时间积分方法、时变系统的时间积分方法、模态叠加方法和时间积分方法的联合使用策略。书中给出了部分方法的MATLAB程序。

常微分方程稳定性基本理论及应用.pdf

常微分方程稳定性理论和Lyapunov函数方法的重要价值与意义在一百多年来的发展历史中已经得到了充分的证明,形成了从理论到应用的一个非常丰富的体系。  本书较系统地介绍了常微分方程稳定性理论和Lyapunov函数方法的基础内容和应用,从中读者可基本了解常微分方程稳定性理论的发展状况和研究方法。本书共计二十一节内容,可划分为两个部分。第一部分从第1节到第12节,内容包括:基本定理,稳定性基本定义,L

变分法与常微分方程边值问题.pdf

作为此前出版的《非线性常微分方程边值问题》研究内容的后续进展,本书是作者十余年来在常微分方程和时滞微分方程周期轨道方面所作研究工作的总结.在介绍临界点理论和指标理论的基础上,对常用的指标理论和指标理论作出推广,提出和论证了Zn指标理论和Sn指标理论,拓展了应用范围.对不同类型的时滞微分方程通过选定相应的Hilbert空间,在其上给出自伴线性算子,构造特定的可微泛函,得出多个周期轨道的估计.对非自治

右端不连续微分方程模型及其动力学分析.pdf

本书主要是关于右端不连续微分方程模型及其动力学研究的一些近期成果介绍,模型涉及领域包括物理、力学、机械工程、生物生态、经济金融、生产管理、流行病学、神经网络等,其中绝大部分是作者及其所在的研究团队近年来的研究成果。为了使本书内容自成体系,方便读者阅读和学习,书中对右端不连续微分方程的有关基本概念和一些基本理论知识进行了简要介绍。另外,为了使对右端不连续微分方程研究有兴趣的读者能尽快了解这一领域的研

非线性常微分方程基础.pdf

本书是为理工科学生编写的常微分方程定性理论的入门教材, 以简短篇幅介绍非线性常微分方程的近代方法, 并兼顾某些应用. 全书共七章, 内容包括: 预备知识、线性系统、非线性微分方程解的存在定理与解的性质、定性理论初步、稳定性理论的概念与方法、解析方法和应用: 椭圆函数与非线性波方程的精确行波解. 作为研究生入门的基础课, 本书为读者提供了一些数学工具, 希望通过学习本书, 使读者早日进入本专业的研究

偏微分方程数值解法(第三版).pdf

本书内容包括常微分方程两点边值问题的差分方法、椭圆型方程的差分方法、抛物型方程的差分方法、双曲型方程的差分方法、高维发展方程的交替方向法、分数阶微分方程的有限差分方法、Schr*dinger方程的差分方法、Burgers方程的差分方法、Korteweg-de Vries方程的差分