实变函数论

实变函数论讲义.pdf

  本书根据作者多年在中山大学主讲实变函数论的讲稿整理而成,主要 关于测度论和积分理论,内容有集合与基数、测度、可测函数、积分、L2空间等.每一章都附有较多例题,介绍实变函数解题的典型方法与重要技巧.书中的习题都有解答或者提示,方便学生学习.本书一个重要特点是结合测度论的发展历史

实变函数论新编.pdf

本书分为三章:第一章“集合论基础与点集初步”介绍了集合的概念、运算、势,讨论了Rn中集合的特殊点和特殊集及其性质;第二章“可测集与可测函数”,介绍了可测集合与可测函数概念,讨论了各自具有的性质和相互关系,为改造积分定义作必要的准备;第三章“Lebesgue积分及其性质”定义了新积

实变函数论教程.pdf

  本书系统讲述实变函数的基本理论,包括集合论的基本概念、欧几里得空间的拓扑性质与连续函数的基本性质、点集的测度与可测函数、Lebesgue积分理论以及微积分基本定理。作为实变函数基本理论的延伸,本书还给出了Lp空间的基本理论和抽象测度论的一个简介,前者是泛函分析与调和分析的一个

实变函数论.pdf

本书内容包括集合与点集、Lebesgue测度、Lebesgue积分、Lebesgue积分意义下的微分与不定积分以及Lp空间.